
JOURNAL OF COMPUTATIONAL PHYSICS 79, 113-134 (1988) 

Unsteady Solution of Incompressible 
Navier-Stokes Equations 

w. Y. SOH 

Sverdrup Technology Inc., and NASA Lewis Research Center, 
Cleveland, Ohio 44135 

AND 

JOHN W. GOODRICH 

Computational Fluid Dynamics Branch, NASA Lewis Research Center, 
Cleveland, Ohio 44135 

Received April 30, 1987; revised January 22, 1988 

A new time-accurate tinite-difference numerical method for solving incompressible 
Navier-Stokes equations is presented with primitive variables as the unknowns. The 
numerical scheme is a Crank-Nicolson implicit treatment of all terms of the equations with 
central differencing for space derivatives. The pressure and the nonlinearities in convection 
terms are not lagged. To obtain the incompressible solution at the advanced time level a 
continuous auxiliary system is introduced in pseudo time with artiticial compressibility. Time- 
accurate solutions are presented for two-dimensional fluid flows in a square cavity with an 
impulsively starting lid and with an oscillating lid. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Solution of the incompressible Navier-Stokes equations is of great interest in 
fluid mechanics since the fluid motion of water and low speed air is cQnside~gd 
incompressible. There are also many other engineering applications This paper is 
concerned with unsteady solutions of fluid motion whether they approach an 
ultimate steady state or not. 

A significant difficulty for incompressible flow calculations occurs since the 
continuity equation is given not in a time evolution form, but in the form of a 
divergence-free constraint. This is one of the major differences from compressible 
flow calculations. The pressure, which has no time term, is coupled implicitly with 
the divergence-free constraint on the velocity. This constraint, which is the 
continuity equation, prohibits time integration of the incompressible flow equations 
in a straightforward manner. 

Due to the special role of the pressure, approaches to the solution of the 
Navier-Stokes equations may be classified into three major areas The first 
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approach solves for vorticity as a primary unknown from the vorticity transport 
equation which is constructed by taking the curl of the momentum equation. The 
continuity constraint is satisfied by introduction of the vector potential for velocity. 
For two-dimensional flow the vector potential has only one component, which is 
the streamfunction. This vorticity-streamfunction method (see Ref. Cl]) has been 
widely used for calculating fluid flow in two space dimensions. 

The second approach is a fractional step method with a primitive variable 
formulation, in which an intermediate step is introduced to yield a velocity field 
satisfying only the momentum equation with no pressure term. To obtain a velocity 
of zero divergence, the intermediate velocity and the pressure are corrected 
sequentially by the pressure gradient, and by the divergence of the intermediate 
velocity, respectively. This approach, which is now known as the projection 
method, has been developed by Chorin [2]. Recent work with this idea has been 
done by Kim and Moin [3]. A variant form of [2] called the velocity-pressure 
method [4] also calculates the intermediate velocity from the momentum equation 
but with the pressure term. The pressure is then corrected by an amount propor- 
tional to the divergence of velocity and a new velocity is obtained successively until 
the divergence of velocity vanishes. Peyret [5] follows this iterative procedure to 
obtain the solution of nonlinear system of equations via the Crank-Nicolson 
approximation of all terms. 

The third method may be viewed as a coupling between the momentum and the 
continuity equations. This method can be subdivided into two types; indirect and 
direct coupling. The former calls for the solution of a Poisson equation for the 
pressure, which is derived by taking the divergence of the momentum equation 
combined with continuity. This approach, known as the pressure Poisson method, 
has been introduced by Harlow and Welch [6] for the solution of two-dimensional 
flow and extended to three dimensions by Williams [7]. Moin and Kim [S] have 
used the latter approach which solves the momentum and continuity equations 
simultaneously to yield the velocity and pressure. The former method is here 
referred to as the indirect coupling because of the sequential treatment of the 
momentum and Poisson equations to yield the pressure and divergence-free 
velocity. 

In this paper we present a new time accurate finite-difference method for incom- 
pressible fluid flow, which is different from any of the three approaches discussed 
above. The Crank-Nicolson approximation is used for all linear and nonlinear 
terms, including pressure. A pseudo-time is introduced between the two physical 
time steps in order to solve the nonlinear system for the divergence-free velocity at 
the advanced time level. The momentum equations are discretized in physical time 
and are then written in a continuous pseudo-time derivative form. The continuity 
equation is preconditioned with a pseudo-time derivative of the pressure. The 
artificial compressibility method [9] is applied to the preconditioned system of 
equations in the pseudo-time domain. This method provides an enormous com- 
putational economy in a steady-state incompressible flow calculation because it 
does not require a divergence-free velocity field at every time step until the steady 
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state is reached. The physical solution at the advanced time level is obtained as the 
steady solution of the system of preconditioned equations in the pseudo-time. 

Most previous methods generally avoid solving nonlinear equations by an 
explicit treatment of the convection terms, for example, by simply lagging these 
terms or by using the second-order Adams-Bashforth method. This imposes a 
severe constraint on the time step size in terms of the Courant number limit. In the 
present work the Courant number limit on the physical time step is eliminated 
the use of the Crank-Nicolson approximation for all terms and by coupling 
momentum equations with the continuity in an appropriate manner. 
mathematical formulation is described in Section 2. Computational results are 
presented in Section 3 for fluid flows in a driven cavity. As example problems, two 
dimensional unsteady solutions are presented for fluid flows in a square cavity wit 
an impulsively starting lid and with an oscillating lid. 

2. FORMULATION 

The incompressible Navier-Stokes equations are written in a dimensionless form 
as 

and 

v.u=o, (21 

where u is the velocity, p the static pressure, t the time, and Re the Reynolds num- 
ber. It is our aim to solve (1) accurately in time and space with the constraint (2). 
Using the standard Crank-Nicolson approximation for discretizing the rnorne~t~~ 
equation (1) with respect to time gives 

U n+l-un 1 

At +$G(u”+‘,p “+‘)+G(u”,p”)]=o, 

where d t is the time increment, the superscripts IZ and n + 1 refer to the time levels, 
and G(u, p) = V. (uu) + Vp - Re-’ V2u. The time difference equation (3) has 
second-order accuracy in time, but it is nonlinear since the convection terms are 
also evaluated at the n + 1 time step. The continuity equation (2) should be satisfie 
at every time step, so 

v.u . n+l=0 (4) 

If we write P+l=u~+l-uE and jY’+l=p”+l-pn, then Eqs. (3) and (4) are 
rewritten as 
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U An+l+~G(~n+;~+l,pn+gn+l)= -~G(u~,p”) (5) 

V .;n+1 = 0, (6) 

where tx = At/2. For the nonlinear solution of (5) satisfying the divergence-free 
constraint (6) on the velocity, we introduce a continuous auxiliary system in 
pseudo-time, as 

; + 6 + ctG(u” + ii, p” +@) = -uG(u’, p”) (5’) 

@ p-+v.e=o aT (6’) 

where z is the pseudo-time which is not physical, fl is the artificial compressibility 
coefficient, and ti = u* -u”, j? =p* -p”; here, the asterisk denotes a transient value 
in pseudo-time. From (5’) and (6’) we can see that 6 and j? become 8”+ ’ and p”+ ‘, 
respectively, as the steady state is reached asymptotically in pseudo-time. Con- 
sequently, the solution of the system (5) and (6) is equivalent to the steady solution 
of the system (5’) and (6’). The time r is called here pseudo-time to be distinguished 
from the physical time t. As we see in (6’), the divergence-free velocity field is not 
obtained until the steady state is reached. Therefore, the system (5’) and (6’) has no 
physical meaning until reaching the steady state in pseudo-time. Since the pseudo- 
time r is purely artificial the time increment AZ can be taken as large as possible to 
expedite the convergence to the steady state. This artificial compressibility method 
has been used for the steady solution of various fluid flow problems [9-121. 

Dropping the superscript II for convenience and writing the components of (5’) 
and (6’) in the Cartesian coordinates (x, y) gives 

n 

E+ic+a ~(2uIi+li2+3)+~(~~+Ulj+nB)--Re-‘V21i 
aY 1 = -2aG, (7) 

” 
:+~?+a ~(uB+d+liB)+~(2DL:+ti2+d)-Re-‘V2L1 

aY 1 = -2aG, (8) 

(9) 

where (Z;, 6) and (u, u) are the Cartesian components of the velocities, and where G, 
and GY in (7) and (8) are the Cartesian components of G(u,p), 

G,=~+~(u~)+~-Re~1V2u ax ay 

* ap GY=$(uu)+F+---Rep1 V2v. 
ay ay 
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The values of (u, v) in (7) and (8) appearing as coefficients of (ti, G) are the values at 
the physical time step n. The terms ( -2aG,, - 21xG,?) in (7) and (8) are evaluate 
at the physical time step n, and they serve as external forcing terms that drive the 
flow variables from the physical time step n to n + 1. The system (7), (8), and (9) 
may be considered as a continuous version of a Newton type iterative method for 
solving the nonlinear equations (3) and (4). If we let zPk, v*‘~~ and p”,k be the kth 
estimates of zPtl, vn+‘, and p n + ’ in Newton’s method for (3) and (4), with u”, #, 
and p” as our initial guess, then the component equations for du = gn,k+ 1 - u”*~~ 
Av = vnak+ 1 - v*,k, and Ap =pn,k+l -pn,k are 

Aui-a ~(2uAu+Ap)+-$(uAs-t-uAu)-RePi V’(Au) 

= -u n,k + d’ - a(G: i- G’$k) 

Au-t-a 
i 

i (udv + vdu) +$ (2vAv + Ap) - Re-’ V*(Av) 

= -u n,k + vn - a(G; + G;k) 

;(Au)+&fo)=O. 

In the previous section, the direct solution of (10) is referred to as the direct 
coupling approach. The system used by Moin and Kim [ 81 is the same as this, 
except that theirs is linear due to an explicit treatment of the convection terms 
and no iterative procedure is needed (i.e., k= 0) for the solution of the coupled 
system (10). 

Since the physical time system (3) and (4) or (5) and (6), and the pseudo-time 
system (5’) and (6’), are both initial boundary value problems, initial and boundary 
data must be specified to complete these systems. Any divergence-free velocity field, 
with arbitrary pressure distribution may be admitted as initial data for system (3) 
and (4), and the initial flow variables for system (5’) and (6’) are taken to be zero: 

any u and p satisfying V . u = 0 at 1=0 

and 

For boundary conditions, let us consider the case of a driven cavity flow where the 
velocity is given along boundaries (boundary conditions for a through flow 
problem are different and will not be considered here). We will employ t 
staggered mesh shown in Fig. 1, so that the boundaries on which the veloci 
given are half a mesh space from any pressure locations, and pressure boun 
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LX (a) 

FIG. 1. (a) Schematic of staggered grids for a cavity geometry: 0, pressure; +, u-; 1, u-velocity. 
Shaded area represents p-cell. (b) u-cell. (c) o-cell. 

conditions are not needed. The velocity boundary conditions for the two systems 
are 

u=v=fi=fi=o at x=O,x=l,y=O. 

li= u&“+‘)- UB(P) at y=l. 
(12) 

24 = U,(t) and 

where U,(t) is the velocity of the lid. The boundary value of zi at y = 1 is taken as if 
the steady state were reached because in system (5’) and (6’) transient values of ti at 
y = 1 cannot be clearly defined. However, this boundary value of 6 at y = 1 becomes 
exact as the solution approaches steady state in pseudo-time. 

Various explicit or implicit numerical schemes may be used for the solution of 
Eqs. (7)(9) in pseudo-time. In the present study we employ a factored alternating 
direction implicit scheme. If the superscript k denotes the pseudo-time level, then 
the y-sweep from (8) and (9) for our scheme may be written as 

“k+l 
V -Sk 

AT 

&jk+l 
&@+l+$+l-Re-‘- 

ay 1 

where pk + I is an intermediate value of pk+ ‘, and 

=Hy 

(13) 

H,= -a[2G,+~(uiTk+vz2k+tikt?k-Re~1~)+~(i2)k]. 

The y-sweep is followed by the x-sweep from (7) and (9), with 

-k+l u - $ 

AZ 
2&+1+$k+1-Re-1- 

azik+l =H 1 ax x 
(14) 
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where 

In the y-sweep, 0 is coupled with the pressure and is considered to have only y 
derivatives, with all x derivatives and nonlinearities lagged and absorbed in H,. In 
the x-sweep, ti is coupled with the pressure and is assumed to have onIy x 
derivatives, with all y derivatives and nonlinearities absorbed in the source ter 
H,. Central difference approximations with a uniform staggered grid are used for 
the spatial discretization of (13) and (14). In this staggered grid ~nit~-di~~re~~~ 
approximations of U, v, and p are made at different grid positions, called the U-, u-, 
and p-cells as shown in Fig. 1. Let the subscripts i and j be the indices in the x and 
y directions. Then, the central difference formulation of (13) in the y-sweep becomes 

where 

aj- 1 = -adz 
vvs 1 VVN- vvs 2 
~ 

AY + Lip’ 1 
uj=l+AzfcrAt 

AY 

aj+l 

and where VKS’ and IWV are the u-velocities on the north and sourth boundaries 
of the u-cell. The finite difference approximation of (14) in the x-sweep becomes 

where 

bi- 1 = -ctAz 
uuw 1 UUE-WUW 2 
-++ Ax AX 

+ 

and where UUE and UUW are the u-velocities on the east and west sides of the 
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u-cell. Details of the finite-difference expressions of H, and Hy may be found in 
Ref. [12]. 

The system (15) and (16) yields a coupled solution of Bk+’ and pk+r through a 
2 x 2 block tridiagonal coefficient matrix. If we obtain the term $z i --pi+ 1 from 
(16) at mesh points (i, j) and (i, j + I), and substitute the resulting expression into 
(15), we obtain the tridiagonal scalar equation 

where 

e = LTA~~/(/IA~‘), aiqax= (iiij- ii,- lj)/~~, ali,, ,/ax = (ii,, 1 - ii,- y+ ,)/Ax. 

In a similar manner, tik+ i is coupled with fik+ ’ in the x-sweep, so that (17) and 
(18) are combined to give the tridiagonal scalar equation 

(hi_ 1 -j) 22;:; + (bi+ 2f) iis+ ’ + (bi+ 1 -f) tifT’+‘l: 

+@f+,,-a; ) 1 (17’) 

where 

f = aAz*/(pAx*), ae,jay= (+a,- ,)/A~, a%+ lj/av = tei+ lj- Bi+ Ij- l)lAY. 

The pressure p is then obtained by (1X). 
To see how to choose the coefficient of artificial compressibility p, we will 

consider the one-dimensional inviscid model problem from (5’) and (6’) 

(19) 

In (19) nonderivative terms are also dropped for simplicity. The eigenvalues of the 
square matrix in (19) are 

A = cm * (a222 + LY/pp* (20) 

The eigenvalues (20) are real and distinct, so that the system (19) with artificial 
compressibility is hyperbolic in pseudo-time, and subsonic in the sense that the 
eigenvalues are opposite in sign. Since an eigenvalue of the system (19) is a wave 
propagation velocity, the I’s in (20) may be interpreted as waves travelling along 
and against the fluid flow with a sound-like velocity (a2u’ + LX//?)“~ relative to the 
local fluid flow. The local flow velocity in our system (19) is LXU instead of u because 
that system was derived in the pseudo-time using the Crank-Nicolson time 



UNSTEADY INCOMPRESSIBLE NAVIER-STOKES 121 

discretization. For compressible flow with fluid velocity s and speed of soun 
eigenvalues are s, s + c, and s-c, so that we may identify s and c with au a 
(a%* $ a//I)‘/2 in the pseudo-time system. The choice of a value for /I is optimal if 
the magnitude of the eigenvalues are close to each other, with 

au - MU + (a%* + cc/p)“* - (cm + a/p)‘/’ - cm 

A good compromise can be reached if we take fi to be 1/(3au”), so that the ratio of 
the largest to the smallest eigenvalues becomes only 3. In the present analysis we 
take /I as 

where q is a representative physical flow speed such as (u” + v2)l12~ The choice of 4 
is highly heuristic, especially for a fluid flow with no preferred flow direction. 
However, Eq. (21) provides a plausible guideline for choosing a value of p so that 
the product of the artificial compressibility and the kinetic energy is of order dt-I. 
The value of /? can be taken much larger in the present unsteady calculation 
through the pseudo-time system than in the unsteady calculation for a stea 
solution, where pq* is of order unity. 

We will examine the coupled systems (15’) and (17’) for velocity and pressure in 
order to choose a pseudo-time step AT. If we assume that VVN= VI’S = u and 
UUE= UUW= u, with both positive, then diagonal dominance is kept in (15’) if 
R,<l or Az>/?uAy(l-R;‘), or Az<j?vAy(l-R;‘) and (vAt/Ay)(l-R;l)>f, 
where Ip, is the cell Reynolds number defined as v Re Ay. Similarly, d 
dominance is kept in (17’) if R, < 1 or AZ > /?uAx(l - R; ‘), or AZ < j3uAx(l 
and (uAt/Ax)(l -R;‘) > 1, where R, is another cell Reynolds number u 
The last condition for either (15’) or (17’) is interesting though impractical, since 
too small a value of AT requires the Courant numbers Atv/Ay and Ah/Ax to be 
larger than unity. In this paper we have neglected l/R, and 1,/R,, and we have 
chosen the pseudo-time step as 

Condition (22) gives a lower limit on AZ and numerical experiments are required to 
obtain an optimal value. The choice of the physical time step At depends upon the 
character of the problem under consideration. If the solution approaches a stea 
state, the At can be taken gradually larger as physical time goes on. If a problem 
has forced excitation, then At should be chosen to resolve the details of the 
excitation. For a study on flow behavior in large vertical structure such as in 
mixing layers of jets or coflows, At should be taken small in order to capture the 
vortex roll-up phenomena. 
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3. NUMERICAL RESULTS 

Numerical results will now be presented for unsteady flows in a two-dimensional 
square cavity driven by the movement of the lid (i.e., y = 1). Flow in a driven cavity 
has drawn much attention because of its relevance to recirculating fluid flows in a 
confined area. It also has been chosen as a test problem for the numerical scheme 
developed since the boundary conditions are well defined, and since there is no 
preferred flow direction. Most effort has been spent on the steady solution of the 
two-dimensional flow using either a vorticity-streamfunction formulation [ 13, 141, 
or a primitive variable formulation [3, 12, 151. 

Some unsteady solutions have recently been reported using vorticity and velocity 
as primary unknowns [16] and using primitive variables [ 17, 18, 191. All of these 
results present the flow field with time after an impulsively started motion of the lid. 
In the present study we present unsteady solutions for a case in which the lid moves 
with a uniform velocity impulsively, and for a case where the lid oscillates 
periodically. The solution of the former case approaches steady state, but the latter 
case does not. A 40 x 40 uniform grid with dx = dy = 0.025 is used throughout, and 
the calculations are all at Re = 400. The Reynolds number is defined as Re = U, L/v, 
based upon the side length L, the kinematic viscosity v, and the velocity V, taken 
as the uniform lid velocity for the case with an impulsively started lid, and as the 
maximum lid velocity for the case with an oscillating lid. 

Flow Inside a Cavity with an Impulsively Started Lid 

The velocity of the impulsively started lid is given by a step function uljd= U,, for 
t 2 0 and Ulid = 0 for t < 0. At the initial stage of flow development as t + O+, a flow 
boundary layer forms along the lid away from the corners with the dimensionless 
thickness of 6 N ,/‘& Since the boundary layer thickness is extremely small for 
t-+0+, it is very difficult to resolve this boundary layer numerically unless an enor- 
mous number of grid points are employed. If we estimate the boundary layer 
thickness to be l/80, which is the grid generated boundary layer between the lid 
and the immediately neighboring location of u-velocity in the y-direction, then the 
time required for the growth of the boundary layer to this thickness is about 0.06 at 
Re =400. Under the grid arrangement used in this work the solution for t ~0.06 
may not be appropriate for physical interpretation. For the flow with an 
impulsively started lid, a minimum time step of At = 0.05 is used at the beginning. 

Since this example exhibits the typical behavior of an asymptotic approach to the 
steady state, the physical time step size, which is 0.05 initially, is increased up to 0.8 
for large t. Table I lists with increasing t the coefficient of artificial compressibility, 
time step size, convergence criteria for reaching steady-state in the pseudo time, and 
others. Here, E, and E, denote the x and y components of au/at + V ’ (uu) + 
Vp - l/Re V’u, which are the u and v momentum equation residuals, and rms 
denotes the root-mean-square. The values with an asterisk in Table I are taken as 
the convergence criteria for reaching steady state in the pseudo-time. The velocity is 
very small in the entire cavity, except in a narrow region underneath the upper lid 
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immediately after the impulsive motion, and the velocity increases as the flow 
evolves further. Consequently the value of B is taken as large as 100 in the 
beginning and then becomes reduced as suggested by (21). 

The drag coefficient C, is defined to be a dimensionless drag force exerted on the 
lid, with 

C = Drag force on the lid/length D 
D 

P%L =Re 

where 

D= dx. 

Three values of u are used to evaluate the wall shear (au/dy)Y= 1 in (23) 

(24) 

It is seen from Fig. 2 that immediately after the impulsive start of the lid, D 
decreases precipitously and then becomes quickly constant. Although the drag D 
exhibits a steady behavior in a very short time, it takes relatively long for the entire 
flow field to settle down to a steady state. To investigate the singular behavior of D 
as t -+ O+ in Fig. 2, its values are plotted against t-li2 in Fig. 3. The D values 66.7, 
48.9, 40.3, 35.8 corresponding in order to t = 0.05, 0.1, 0.15, 0.2 all fall exactly on a 
straight line. Another calculation has been performed for Re = 200, which renders 
D = 43.9, 34.3, and 30.5 corresponding to t = 0.05, 0.1, and 0.15, respectively. These 

FIG. 2. Drag force D vs t at Re = 400 for the implusively starting flow. 
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FIG. 3. Drag force D vs t-‘I* using At = 0.05. 

values of D are also on a straight line if plotted against t-‘j2. Therefore, we can say 
that the drag force on the lid has a t -Ii2 singularity as t -+ 0 +, and from these data 

c, = 0.035 t - lj2 for t-+0+. PI 

Since the coefficient in (25) is the same for both Re = 400 and 200, it may well be 
considered as a universal constant at least for the Reynolds number range con- 
sidered here. This type of singularity in the drag can be expected from the previous 

boundary layer considerations (i.e., 6 -& as t -0”). If At is taken muc 
smaller, 0.01, for instance, we can, of course, obtain a numerically stable solution. 
However, it must be determined if the solution obtained is physically acceptable 
for t-+0+. By (24), our estimate of the shear &/8y at y = 1 with qid = I, 
Ujf = Uif - 1 = 0, and Ay = l/40 is about 107. This is approximately the maxi 

ml I I I 4  I L  I I 
2  4 6 8 10 $12 

FIG. 4. Drag force D vs t-“’ using At = 0.01. 
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shear to be yielded from the grid size in the present calculations, and this maximum 
replaces the very high physical shear values &/k?y that approach infinity as t + O+. 
This is entirely a grid effect and is nonphysical. The values of D obtained using 
At = 0.01 are also plotted against t-l’* ’ m Fig. 4, which shows that D approaches a 
fixed asymptotic value, presumably 107. Even though this asymptotic behavior for 
t -+ O+ is not physical, in a very short time (e.g., t 2 0.05) D varies linearly with 
t-l/‘, and the slope calculated from this linear regime in Fig. 4 is the same as the 
coeffkient given in (25). Therefore, it can be said that after the impulsive start there 
is a period of time in which the numerical solution depends solely upon the grid 
and is nonphysical if too small a value of time step At is used. On the other hand, if 

FIG. 5. Flow evolution for the implusively starting flow. 
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8 

36 

FIG. 5-Continued. 

we take At large at the beginning, then the step function given as the initial con- 
dition at the lid may be misread as a uniform acceleration of U,,/dt, so that a 
solution with different initial condition is obtained. For a physically interpretable 
solution during the early stages of the flow evolution, neither too small nor too 
large a time step should be used for a given grid. A solution that is to be ~hysi~a~~y 
interpreted for t < 1 may be obtained using a much finer or a stretched grid. Even 
for a small At with a finer grid, an implicit approach is recommended since reduc- 
ing the grid size imposes severe limitations on the time step size if an explicit time 
advancing method is used. 

How development with time is shown in Fig. 5 by presenting both strearn~~~~ 

581/?9/2-9 
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contours and velocity vector plots. At the beginning the streamline contours appear 
symmetric about the axis x = 0.5 as shown at t = 0.1. The boundary layer ap 
clearly just beneath the lid as crowded streamlines. Flow change is limited to the 
region very close to the lid and the fluid remains stagnant in the rest of the cavity. 
Immediately after the impulsive start of the lid, the flow exhibits a large vertical 
structure with a vortex center located at about x = 0.5 and very close to the li 
the flow evolves the vortex center moves towards x = 1 as shown at t = 1 and 2. As 
the vortex approaches the right wall at x = 1, an interaction occurs between the 
vortex and the wall, and the vortex retreats from the wall while its center 
continuously drops. This is illustrated in Fig. 5 for t = 1, 2, and 4. Counter ~ot~t~~~ 
vortices appear near the right and the left corners in the lower cavity as early as 
t = 2, and grow in size as the flow evolves further. This is shown in the vector plots 
at f = 2, 4, 8, in Fig. 5. The magnitude of velocity in these additional reci~c~lat~~~ 
regions is extremely small. 

The values of max(&&t) and max(av/at) are about 7.3 and 3.7 at t=O. 
become smaller with time. At t = 36 near the right corner in the upper cavit 
values are about 8 x 10m4 and 1 x 10e3, which are reasonably small for the 
assumption of the steady state, especially in areas away from the corners. The 
u-velocity profile at x=0.5, which is the axis of geometric symmetry for the cavity, 
is compared at t = 36 with the steady solution of Ghia et al. [I33 in Fig. 6, 

As the second computational result we present a fluid flow in a driven cavity with 
a time-periodic lid velocity. The oscillating lid velocity is given as 

U,(t) = u, cos mt, 

where o is the frequency, with period T = 2njc.0. In this study we will take w = I. 

FIG. 8. Drag force D vs 1. 
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FIG. 9. Flow patterns inside one complete cycle after time periodicity is attained in the solution. 

The Reynolds number is 400 based upon the maximum lid velocity U,. The steady 
solution for the previous example is used as the initial data for the flow variables u 
and p at t = 0. One period or cycle is divided into 40 uniform time intervals, so that 
At = 2rc/40 for this calculation. This problem can be viewed as a driven cavity flow 
in which the lid is given succesive impulses with a step increase in lid velocity of 
U,(t+dt)- Us(t). 

In this example we set p and AZ at 50 and 20, respectively. The convergence 
criterion for the steady state in pseudo-time is taken as max(E,) < 3 x 10e3. The 
number of pseudo-time steps required to reach the steady state are 50- 80. The 
values of max(V . u), max(E,), rms(E,), and rms(E,) become 1.2 x lo-’ - 5 x 10e6, 
1.5 x 10e6 - 3 x lo-‘, 7 x 10v5 - 3 x lo-‘, 5.3 x 10e6 - 1.8 x 10e6, and 2.7 x 10e4 
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FIG. 9-Continued. 

- 1.4 x 10e4, respectively. The Navier-Stokes equations must be integrated in time 
for as many cycles as are needed to reach a periodic steady state. In the perio 
steady state the solutions at time t and t + T must be identical. For the present case, 
about 8 cycles are required to reach the periodic steady state from initial data given 
by the previous solution at t = 36. 

Figure 7 illustrates the evolution of the flow at times when U, reaches its positive 
maximum at t = mT for m = 2, 4, 8, and 10. The contour plot for m = 0 corresponds 
to the steady solution of the previous problem that was taken as the initial data for 
this computation. Since the streamline contours for m = 8 and m = 10 appear iden- 
tical, we assume that the periodic steady state is obtained for m 28. The drag force 
D is plotted in Fig. 8. The drag force quickly tends to a periodic variation, as can 
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FIG. 9--Continued. 

be seen by comparing the magnitude and the shift of the first valley with those that 
come afterward in Fig. 8. Like the previous example, it takes many more cycles to 
obtain the periodic steady solution for the entire flow field. The asymptotic 
maximum drag for this problem is about D = 31.4. Figure 8 shows that there is 
31.5” phase shift with the maximum drag occuring about 3.5dt before the lid 
reaches its peak velocity. 

Streamline contours and velocity vector plots for the periodic steady solution are 
presented in Fig. 9 at the 1 lth cycle for lOT< t < 11 T. Figures 9a through f’ 
correspond, in order, to the time sequence t = lOT+ ydt, where y = 8, 12, 14, 16, 18, 
20, 28, 32, 34, 36, 38, and 40. A symmetry consideration leads us to expect that 
flows at time t and t + T/2 are mirror images of each other about x = 0.5, and the 
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FIG. 9-Continued. 

streamline contours and velocity vector plots clearly indicate the symmetry between 
Figs. 9a-f and a’-f’. 

4. SUMARRY 

A time and space accurate numerical method has been presented for the solution 
of the incompressible Navier-Stokes equations. The divergence-free velocity con- 
straint and the nonlinearities have been dealt with at each physical time step by 
using a straightforward time-marching method in pseudo-time with artificial com- 
pressibility. With the present method we can extract the t-l/’ singularity in the drag 
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on the lid for the impulsively started cavity flow and also obtain a crisp periodicity 
in the solution of the oscillatory motion. 
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